

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A Thermal and Photostable Reference Probe for Q_f Measurements: Chloroform Soluble Perylene 3,4,9,10-Tetracarboxylic Acid-bis-N, N-Dodecyl Diimide

Siddik Icli^a; Huriye Icli^b

^a Research Institute for Basic Sciences Department of Chemistry, TUBITAK-Marmara Research Center, Gebze-Kocaeli, TURKEY ^b Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean University, Mersin, TURKEY

To cite this Article Icli, Siddik and Icli, Huriye(1996) 'A Thermal and Photostable Reference Probe for Q_f Measurements: Chloroform Soluble Perylene 3,4,9,10-Tetracarboxylic Acid-bis-N, N-Dodecyl Diimide', *Spectroscopy Letters*, 29: 7, 1253 — 1257

To link to this Article: DOI: 10.1080/00387019608007119

URL: <http://dx.doi.org/10.1080/00387019608007119>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

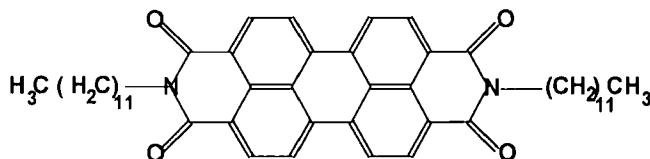
**A THERMAL AND PHOTOSTABLE REFERENCE PROBE FOR
Q_f MEASUREMENTS: CHLOROFORM SOLUBLE PERYLENE
3,4,9,10-TETRACARBOXYLIC ACID-bis-N,N'-DODECYL DIIMIDE**

SIDDIK ICLI and HURIYE ICIL***

**TUBITAK-Marmara Research Center, Research Institute for Basic Sciences*

Department of Chemistry P.K.21, 41470 Gebze-Kocaeli, TURKEY

***Department of Chemistry, Faculty of Arts and Science, Eastern Mediterranean*


University, Famagusta, N.Cyprus, Mersin 10, TURKEY

Abstract - The synthesis of a chloroform soluble perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-dodecyl diimide via condensation of perylene 3,4,9,10-tetracarboxylic dianhydride and 1,12-diamino dodecane is described. The thermal analysis is shown thermal stabilities above 400°C. Thermal and photostable dye is measured to have a fluorescence quantum yield of unity, $Q_f = 1.00$, in chloroform solutions. Perylene bis-dodecyl diimide is an ideal reference probe for fluorescence quantum yield measurements in 500-650 nm region and a reliable soluble photosensitizer for solar photochemical applications.

INTRODUCTION

We have shown recently that the fluorescence quantum yields of synthesized perylene diimides vary drastically ($Q_f = 0.04-0.96$) on N-aryl(alkyl) substitution¹. The low solubilities of these compounds (~10-20 mg/l, only in acetonitrile and dimethylformamide) may have been responsible of Q_f variations through aggregate formations. The insolubility of these highly thermal and photostable structures, limits the applications as photosensitizers in photochemical reactions. Literature in major gives results on solid state investigations. Graser and Hadicke² and later Duff et. al.³ have determined the effect of the N-alkyl group on photoconductivity by solid state absorption of N,N'-dialkyl diimides. The photoconductivity of these dyes in the visible region and polymorphism has been demonstrated in solid state films⁴. Electron acceptor capacity of perylene diimide photosensitizers were proven by Wasielewski⁵.

We now report a novel synthesis and spectral characteristics of perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-dodecyl diimide for solution studies.

EXPERIMENTAL

A mixture of perylene-3,4,9,10-tetracarboxylic acid dianhydride (185.2 mg, 0.472×10^{-3} mol), dodecylamine (175 mg, 0.944×10^{-3} mol), *m*-cresol (20 ml) and isoquinoline (2 ml) was stirred at 80 °C for 1 hour. Then the solution was heated at 120 °C for 1 hour, temperature was raised to 160 °C, heated for 2 hours and finally at 200 °C for 5 hour. The warm solution was poured into acetone (250 ml), the diimide which precipitated was recovered by filtration through a Buchner funnel and dried in vacuum oven. In order to remove the traces of *m*-cresol and isoquinoline, the solid was extracted with acetone in a soxhlet apparatus for 24 hours. The residue was dissolved in chloroform and re-precipitated

in 250 ml acetone. The precipitate was sublimized at 350°C on salt-ice cooled glass surface. The yield was 307 mg, 95 %.

C ₄₈ H ₅₈ N ₂ O ₄	Calc.	C 79.30	H 8.04	N 3.85
	Found	C 78.89	H 8.04	N 3.81

The mass spectra was taken with a Fision VG Zab MS instrument. The ir spectra were recorded with Kbr pellets using a Perkin Elmer 983 IR spectrophotometer. The UV absorption spectra were measured with a DMS 90 Varian UV spectrophotometer and the emission spectra with a spex fluorolog, in Merck grade chloroform. Rhodamine 101 was used as reference probe for fluorescence quantum yield measurements. Dupont 951 TGA, and Dupont 910 DSC instruments are used for thermal analysis studies. Proton nmr spectra were recorded with a Bruker AC 200 L 200 Mhz NMR spectrometer.

RESULTS AND DISCUSSIONS

The molecular structural analysis of perylene bi-dodecyl diimide was done by mass and ir spectral analysis. The molecular peak is being detected at 727 m/e as a base peak, the loss of a dodecyl group peak at 559 m/e and perylene dicarboxylium ion at 307 m/e. The ir spectrum of the diimide has shown carbonyl bands at 1697 cm⁻¹ and 1650 cm⁻¹, CH₂ and CH₃ stretchings at 2853 cm⁻¹, 2920 cm⁻¹ and 2960 cm⁻¹.

The perylene bis-dodecyl diimide is found to dissolve most in chloroform solutions, 180 mg/l. The perylene diimides, synthesized and studied earlier were practically insoluble in chloroform¹. Solubility in chloroform capabled the nmr analysis. Proton nmr spectrum in CDCl₃ is, δ ppm: methyl, 0.87 (t, J=5.6 Hz), CH₂-N, 4.20 (t, J=6.5 Hz), Ar-H, 8.62-8.70 (AB-dd, J_{AB}=8.0 Hz), remaining methylene protons are observed as multiplets at 1.2-1.4 ppm. The UV spectrum of dodecyl diimide is shown higher molar absorbtivity constants in respect to perylene aryl diimides reported earlier¹ (table 1). Fluorescence quantum yield of the perylene bis-dodecyl diimide in chloroform, calculated with respect to reference probe rhodamine 101, is 1.00 at emission spectrum of 485 nm excitation wavelength (figure 1). Thermal analysis of dodecyl diimide shows a weight loss above

Table 1: The UV absorbtion data of perylene bis-N,N'-dodecyl-diimide in chloroform^a.

λ^b_{max}	$\varepsilon^c_{\text{max}}(\times 10^4)$
460	1.74
490	4.74
526	7.62

^a At concentration 0.246×10^{-4} m; ^b λ (nm); ^c ε ($\text{m}^{-1} \text{cm}^{-1}$).

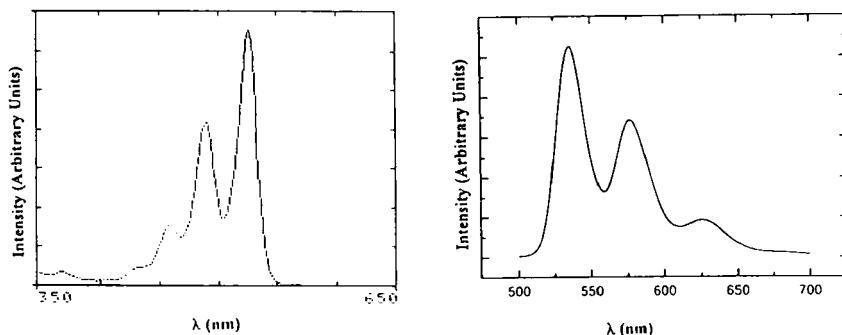


Figure 1 : Absorbance and fluorescence ($\lambda = 485$ nm) spectra of perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-dodecyl diimide, in chloroform.

400°C. Thermal stability and known high photostabilities of perylene bis-alkyl diimides, proves that perylene bis-dodecyl diimide is superior in respect to rhodamine 101 and other reference probes of fluorescence quantum yield measurements, and a reliable soluble photosensitizer for solar photochemical applications

Acknowledgements: Authors thank to TUBITAK and NATO for research support. The authors are also indebted to Professor D.Whitten at Rochester University for providing facilities of some spectral analyses.

REFERENCES

1. a) Icli S., Icil H. Fluorescence quantum yield of synthesized perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-aryl(alkyl) diimides. *Spectrosc. Lett.* 1994; **27(3)**: 323-332.
b) Icil H., Icli S. The synthesis and spectral characteristics of a supramolecular model: Perylene 3,4,9,10-tetracarboxylic acid-bis-N,N'-p-aminophenyl diimide. *Spectrosc. Lett.* 1995; **28(4)**: 595-601.
2. Graser F., Haedicke E. H. Crystal structure and color of perylene-3,4,9,10-bis(dicarboximide) pigments. *Liebigs Ann. Chem.* 1980; 1994-2011.
3. Duff J.M., Hor A.M., Melnyk A.R., Teney D. Spectral response and xerographical electrical characteristics of some perylene bisimide pigments. *Proc. SPIE-Int. Soc. Opt. Eng.* 1990; 183-191.
4. Loutfy, R.O, Hor A.M., Kazmaier P.M., Tam M.J. Layered organic photoconductive (OPC) devices incorporating N,N'-disubstituted dimide and bisaryldimidazole derivatives of perylene-3,4,9,10-tetracarboxylic acid. *J. Imaging Sci.* 1989; **33(5)**: 151-159.
5. O'Neil M.P., Niemczyk M.P., Svec W.A., Gosztola D., Gaines III G.L., Wasielewski M.R. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. *Science* 1992; **257**: 63-65.

Received: March 4, 1996
Accepted: April 17, 1996